# Chapter 8: Production \& Recipe Formulation 

## Recipe Formulation

- Used to develop standard recipes that serve as production controls
- Standardizing recipes
- Adjusting recipes


## Standardized recipes

- Recipe is a statement of ingredients and procedures required to prepare a food item
- Yields a known quantity of product of a known quality
- A recipe is standardized when it has been tested and adapted to the requirements of a specific food service operation


## Advantages of standardized recipes

- Consistency regarding :
- Flavor
- Texture
- portion size
- Nutrient composition (to meet the nutritional needs of the customers: schools \& hospitals)


## Advantages of standardized recipes

- Simplifies other functions of a food service operation (planning, purchasing, forecasting, recipe costing, and pricing)
- Since ingredients and amounts are the same every time the recipe is used


## Advantages of standardized recipes

- Minimize the effects of employee turnover on food quality
- Simplify the training of new staff
- Essential for computerized food service operations
- coded recipes triggers other functions like purchasing and forecasting
- The key to success of centralized ingredient assembly (accuracy in weight and measure)


## Standardized recipe format

- Recipe format : provides all information needed for production of a menu item
- Arranging the information and following the same pattern every time
- Usually, ingredients are listed according to order of use
- Block arrangement : grouping ingredient that are to be combined
- Listing procedures directly across the ingredient



## Standardized recipe content

- Recipe title
- Should be printed in large type with the recipe code
- Yield and portion size
- Total recipe yield (in measure, weight, \# of pans, or \# of portions)
- The serving utensil for portioning
- Cooking time and temperature
- At the top of the page
- Specify the production equipment (eg. Type of oven)


## Standardized recipe content

- Ingredients and quantities
- Names of ingredient on the left side
- Quantities arranged in one or more column to adjust for different yields
- Term before the name: as purchased form $\rightarrow$ the ingredient has been cooked or heated before using it in the product (frozen chopped broccoli, canned tomato, boiling water)
- Term After the name :indicating that the processing after the ingredient is weighed or measured (onions, chopped; eggs, beaten)
- As purchased vs. edible portion (table 8.1)
- Consistent abbreviations (table 8.2)

| Applesauce Cake |  |  |  |
| :---: | :---: | :---: | :---: |
| Desserts No. Ck-3 <br> Portion: $2 \times 2 \mathrm{Hin}$. Cut $6 \times 8$ |  |  | Oven temperature: $350^{\circ} \mathrm{F}$ <br> Time: 30-35 minutes |
|  |  |  |  |
|  |  |  |  |
| Ingredients | 2 pans | 3 pans | Procedure |
| Shortening | 1 lb 7 oz | 2 lb 3 oz | Cream 5 min. on medium speed, with |
| Sugar | 2 lb 14 oz | 4 lb 5 oz | paddle. |
| $E_{B E}{ }^{5}$ | 2 cups | 3 cups | Add and beat 5 min . on medium speed. |
| Applesauce | $2 \mathrm{q}+\mathrm{Vc}$ | 34 qt | Add gradually on low speed. Beat 1 min. on medium speed after last addition. Scrape down. |
| Cake flour | 2 lb 14 oz | 4 lb 5 oz | Sift dry ingredients together and mix |
| Salt | 4 tsp | 2 Tbsp | with raisins. |
| Soda | 1 oz | 1/2oz | Add to creamed mixture gradually on |
| Cinnamon | 1 Tbsp | 4/btsp | low speed. |
| Nutmeg | 1\% tsp | 24.4sp | Beat 2 min., medium speed, after last |
| Cloves | 1\% tsp | 2\% tsp | addition. Scrape down once. |
| Raisins | 12 oz | 1 lb 2 oz | Weigh into greased baking pans, |
| Total wt | 13 lb 6 oz | 20 lb 2 oz | $12 \times 22 \times 2$ in.s 6 lb 8 cz pan. |

- example :
- 15 pounds (AP) of broccoli would be 12 pounds (EP) or less assuming an $81 \%$ yield .

Table 8.1 Approximate yields expressed by weight of selected fruits and vegetables.

| FOOD ITEM | YIELD |
| :--- | :---: |
| Apple, fresh | .78 |
| Asparagus | .60 |
| Bananas | .65 |
| Beans, green or wax | .88 |
| Beets, with tops | .45 |
| Blueberries | .95 |
| Broccoli | .70 |
| Cantaloupe, peeled | .75 |
| Carrots | .70 |
| Celery | .48 |
| Corn on the cob | .94 |
| Grapes, seedless | .76 |
| Lettuce, head | .90 |
| Mushrooms | .76 |
| Peaches | .81 |
| Potatoes, white | .75 |
| Squash, acorn | .85 |
| Tomatoes |  |

## Table 8.2 Common abbreviations used in food production.

| AP | As purchased | oz | Ounce |
| :--- | :--- | :--- | :--- |
| AS | As served | pkg | Package |
| C | Cup | psi | Pounds per square inch |
| EP | Edible portion | pt | Pint |
| ${ }^{\circ} \mathrm{F}$ | Degrees Fahrenheit | qt | Quart |
| fl oz | Fluid ounce | tsp | Teaspoon |
| gal | Gallon | Tbsp | Tablespoon |
| lb | Pound |  |  |

## Standardized recipe content

- Procedures
- Should be divided into logical steps
- Most effective when placed directly across from the ingredients to be combined
- Clear and concise
- Basic procedures are uniform in all recipes for similar products
- Timing for procedures (eg. Cook rice on low heat until .... For 10-15 mins)


## Computer generated recipe

- In food services using a computer assisted system, recipes are printed as needed and in the quantities required for the day's production (fig 8.3)


## Recipe yield

- A measure of the total amount produced by a recipe
- Can be expressed in weight , measure, count


## Quality standards

- Measurable statements of characteristics of food



## Recipe Adjustment

- Two methods :
-The factor method
-The percentage method


## The factor method

- The quantities of ingredients in the original recipe are multiplied by a conversion factor

1. Divide the desired yield by the known yield of the source recipe to obtain the conversion factor

- Source recipe yield : 12
- Desired yield is 75
- The conversion factor is $(75 / 12=6.25)$
- See table 8.3


## The factor method

2. Convert all volume measurements to weights
3. Multiply the amount of each ingredient in the original recipe by the factor
4. Round off unnecessary fractions

## Table 8.3 Adjusting a recipe from a yield of 12 to 75: African vegetable stew.

| STEP 1 |  | STEP 2 | STEP 3 | STEP 4 |
| :---: | :---: | :---: | :---: | :---: |
| INGREDIENTS | ORIGINAL RECIPE $\text { YIELD }=2$ | CONVERTED VOLUME MEASURES TO WEIGHTS | MULTIPLIED BY FACTOR | ROUNDED WEIGHTS |
| Onion, diced | 3 c | 1\# (16 oz) | 6.25\# | 6.25\# |
| Swiss chard | 3 bunches* | 2.25\# (36 oz) | 14.063\# | 14\# |
| Garbanzo beans | 4.5 c | $1.8 \#$ ( 28.8 oz) | 11.25\# | 11.25\# |
| Raisins | 1.5 c | 8 oz | 3.125\# | 3\#, 2 oz |
| Rice, raw | 1.5 c | 10 oz | 3.9\# | 4\# |
| Sweet potatoes | 6 c | 2\# | 12.5\# | 12.5\# |
| Tomatoes | 6 c | 2.66\# (43 oz) | 16.23\# | 16.25\# |
| Garlic | 3 cloves | . 5 oz | 3.125 oz | 3 oz |

Factor: $75 / 12=6.25$.
*Assume one bunch equals 12 oz .

## Adapting small quaintly recipes

- Home recipes can be enlarged to food service operation
- Procedures should be checked because many home recipes lack detailed directions for their preparation


## Expanding home size recipes

1. Prepare the product in the amount of the original recipe (following exactly the original recipe)
2. Evaluate the product (written form), and decide if it is potential for the food service
3. Make modification if needed! Work with the original amount until the product is satisfactory!!

## Expanding home size recipes

4. Double the recipe and make notations if needed for the doubled amount (increased cooking time,...)
5. Double the recipe again, then calculate the quantities needed to prepare one pan that will be used in the establishment
6. Converting household measures to ounces and pounds

## Expanding home size recipes

7. If the product is satisfactory, continue to enlarge by increments of 25 portions or by pans
8. Adjusting for handling losses (making batters, cooking losses... etc)
Dishes can lose from 10-30\% of the water content after cooking

## Forecasting

- A prediction of food needs for a day or other specific period of time using past data
- Facilitates :
- Efficient scheduling of labor
- Use of equipment
- Use of space


## Reasons for forecasting

- Ensure that all of the production stages are completed in a timely manner and that the final product meets standards of quality
- Know how much food to order, , and when it needs to be available for use


## Reasons for forecasting

- Minimizes the chance of overproduction or underproduction
- Overproduction : leftovers is held for later service or redirected to other area
- Food may not meet the standards
- Underproduction : customer dissatisfaction and costly
- Managers substitute expensive heat and serve items
- Rushed last minute food preparation and delayed service


## Forecasting

- In small long term operations:
- Amounts to be produced can be determined by simple tally
- Especially if nonselective menu
- Number of residents is stable


## Forecasting

- In large organizations:
- More sophisticated forecasting
- A tally system would be time consuming
- Regardless of the type of organization,, a good forecasting system is based on sound historical date that reflects the pattern of actual menu item demand


## Historical Data

- Used to:
- Determine needs
- Establish trends
- The data must be consistently and accurately recorded
- Examples p 221


## Historical Data

- Record example p223
- Overtime, a pattern of menu item demand or total meals served will emerge from the recorded data
- Factors influencing pattern variance include:
- Holidays
- Weather conditions
- Special events


# Criteria for selecting a forecasting method 

- Table 8.9 p224


## Other trends to predict the production demand

- They became relying less on the forecasting due to:
- Huge day to day fluctuations in patient census
- Short length of stay/high patient turnover
- Rapidly changing and increasingly complicated diet orders
- Implementation of room service/ meals on demand service


## Other trends

- Service styles like :
- Made to order (MTO)
- Grab-and-go
- Reduced the value of long term forecasting
- Reduced the need to predict demand in advance
- Simply relying on past demand


## The quantities to produce

- Recipes adjusted to the predicted number of portions needed
- Most recipes are calculated in modules of 50 or 100
- Or in pan sizes and equipment
- For non computer assisted systems, standardizing and calculating recipes for more than one amount


## The quantities to produce

- Steps p225


## Product Scheduling

- After formulating the recipe $\rightarrow$ forecasting demand $\rightarrow$ calculating quantities to produce $\rightarrow$ production scheduling
- Production scheduling: communication process whereby the production staff is informed of how the actual activity of food preparation is to take place over specified time


## Production Scheduling

- Purpose : to ensure efficient use of time, equipment, and space
- By identifying :
- Menu items to be prepared
- Quantities to produce
- When to produce
- Who is prepare each item


## Phases of production

- Depending on the type of foodservice system in the operation,
- The sequence of food flow may include some or all of the following:


## Phases of production

1. Preparation of ingredients

- Thawing, cleaning and peeling of veg., retrieving and assembling dry ingredients

2. Production of menu items

- Combining ingredients and cooking

3. Holding under appropriate conditions

- Frozen, refrigerated, hot-hold

4. Transport and service to consumers

## Phases of production

- When planning for production, food managers accounts for the time required for each one of these steps
- And then, schedules the activity of the production accordingly
- Recipe p227 : complex recipe


## Batch cooking

- if the food in the recipe lose it's nutritional quality $\rightarrow$ it is prepared by batch cooking method
- Batch cooking : the total quantity of a recipe is divided into smaller batch sizes and cooked as needed rather than all at once
- Steamed broccoli, rice, pasta


## Batch cooking method



## Production Schedules

- Production sheet include : detailed document used to communicate with production staff and the work that needs to be done for a specific period of time
- Should include :
- Page 228
- Example p229

